

Present and Future
of the OSM data model

from the Overpass API perspective

Roland Olbricht

at SOTM 2018 in Milano

osm.org map, Taginfo, Nominatim, iD, JOSM

Presets, Styles, etc., in general: Processing rules

Tagging schemes

Data model, Database Schemes, File formats

Database engines, XML, Compression

Technology stack of OpenStreetMap

Overview

osm.org map, Taginfo, Nominatim, iD, JOSM

Presets, Styles, etc., in general: Processing rules

Tagging schemes

Data model, Database Schemes, File formats

Database engines, XML, Compression

Technology stack of OpenStreetMap

Overview

Geometry for Ways

Drawing, filtering (rendering, routing)
all require geometry.

Resolving for Planet.osm is expensive:
- often exceeds available RAM
- more than half of the runtime

Much worse when dealing with full-history OSM data.

Problem: no geometry on ways

Geometry for Ways

We even do not see geometry changes in version numbers.

„Way 2.3“ people vs. Way version renumberers
 vs.
Timestamp people

Geometry for Ways

We even do not see geometry changes in version numbers.

„Way 2.3“ people vs. Way version renumberers
 vs.
Timestamp people

(no agreement ever)

„Why cannot I get the unique geometry of a way‘s version“?

Geometry for Ways

Drawing, filtering (rendering, routing)
all require geometry.

Resolving for Planet.osm is expensive:
- often exceeds available RAM
- more than half of the runtime

Much worse when dealing with full-history OSM data.

Problem: no geometry on ways

Geometry for Ways

Partial solution: out geom

Geometry for Ways

OSM Main DB

Tool that adds
geometry

Data consumer

Solved:
- Computing effort for consumers

Not solved:
- File sizes
- Make sense of way history

Partial solution: out geom

Geometry for Ways

OSM Main DB

Tool that adds
geometry

Data consumer

Problem: Redundancy
Ways can get inconsistent if node changes without way.
Ways can get inconsistent if adjacent way changes.
~> Remove node id refs from way

Before: Moving the node implicitly moved the way
- good for: intentionally glued ways
- bad for: unintentionally glued ways, filtered editing

After: Moving the node separates the node from the way

Real solution:
geometry for ways in the Main DB?

Geometry for Ways

Problem: Topology
What if multiple nodes are in the exact same place?

Does this happen at all?
- Rarely, but yes (0.01% - 0.05%)
- Almost all cases are errors
 (e.g. nodes 5578163459 – 5578163466)
- similar frequent to turn restrictions

Real solution:
geometry for ways in the Main DB,
remove node id refs from way

Geometry for Ways

Node:

1 uint64 id
1 int32 lat
1 int32 lon
0..n { string k,
 string v }
metadata

Data model change: Variant 1

Geometry for Ways

Way:

1 uint64 id
2..n { int32 lat,
 int32 lon,
 uint64? ref }
0..n { string k,
 string v }
metadata

Relation:

1 uint64 id
0..n { enum type,
 uint64 ref,
 string role }
0..n { string k,
 string v }
metadata

Node:

1 uint64 id
1 uint32? loc_id
1 int32 lat
1 int32 lon
0..n { string k,
 string v }
metadata

Data model change: Variant 2

Geometry for Ways

Relation:

1 uint64 id
0..n { enum type,
 uint64 ref,
 string role }
0..n { string k,
 string v }
metadata

Way:

1 uint64 id
2..n { int32 lat,
 int32 lon,
 uint32? loc_ref
 uint64 ref }
0..n { string k,
 string v }
metadata

Data model change: Variant 3 (force-split ways)

Geometry for Ways

Node:

1 uint64 id
1 uint32? loc_id
1 int32 lat
1 int32 lon
0..n { string k,
 string v }
metadata

Relation:

1 uint64 id
0..n { enum type,
 uint64 ref,
 string role }
0..n { string k,
 string v }
metadata

Way:

1 uint64 id
1 uint64? from_loc_ref
1 uint64? to_loc_ref
2..n { int32 lat,
 int32 lon
 uint64 ref }
0..n { string k,
 string v }
metadata

Data model change: Variant 4

Geometry for Ways

Relation:

1 uint64 id
0..n { enum type,
 uint64 ref,
 string role }
0..n { string k,
 string v }
metadata

Way:

1 uint64 id
2..n { int32 lat,
 int32 lon
 uint64 ref }
0..n { string k,
 string v }
metadata

Node:

1 uint64 id
0..n { uint64 way_ref,
 uint32 pos }
1 int32 lat
1 int32 lon
0..n { string k,
 string v }
metadata

A Migration Path

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Spec and
Proof of
concept

Consumers Read by
Editors

Written by
Editors

Main API
support

Geometry
for Ways

Closed vs.
open ways

Bounding
boxes
on relations

...

A Migration Plan

Specify the Format
and Implement Converters

Make Back-To-Back Comparisons
of Consuming Tools

Let Editing Software Read the Format

Implement Main API Calls
and Write From Editing Software

Move Old Format to Compatibility Layer

A Migration Plan

Other Issues

Areas

We can:
- represent any shape
- share boundaries
- edit single elements

Other Issues

We cannot:
- check for self-Intersection
- easily figure out is_in
- easily edit huge areas

Local editing?
Topology?
Coastline approach?

Size of Relations

The typical town center pulls many large relations.

How to present them concise?

Other Issues

Relations and Way Splitting

Too many versions,
also on other relations

Avoid splitting for Routes?

What about large boundaries?

Other Issues

Thank you for your attention

Back to your questions

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

